Evidence of Teaching Effectiveness

Introduction

The effectiveness of my teaching is based on my classroom experience as an adjunct instructor
at St. Catherine University. These courses cover the appropriate content and software
development practice, but also include a class project component designed to bolster the
course’s relevance and appeal. Student evaluations are important both during the course
and after its conclusion, and I advocate for my students’ professional goals as well. Below
are a few of my thoughts on each of these topics.

Adjunct Instruction Experience

My teaching experience is informed by my tenure as an adjunct professor at St. Catherine
University. Since 2010, I served as an undergraduate Computer Science instructor in the
Math / Physics department. Since 2012, I served as an adjunct technology instructor in
the graduate Library and Information Science. I have also worked extensively with the LIS
faculty to develop an undergraduate Information Science program, cross-listed with their
graduate offerings. I have learned an immense amount about pedagogy by way of my expe-
rience.

The student evaluations ['ve received have given me a good source of average and anonymous
feedback. The two independent study courses I've conducted have been with students from
previous classes. My experience mentoring them has greatly improved how I approach in-
depth mentoring and instruction. During class, I make a point to ask students how they
feel about how the course is going as the course progresses. These sources of feedback have
proven very valuable for revising course curriculum and my approach in the classroom.

Theory / Practice Cycle

Software engineering is primarily a practice. My courses include extensive lab work, assign-
ments, and a class project in three phases (below). Throughout their work, I do my best
to introduce and discuss software industry best practices. Those who are interested often
incorporate them into their code, others stay with basic requirements; both are fine and sat-
isfy course objectives. The cycle of discussing new Computer Science theory and practicing
software engineering skills help each reinforce the other.

From time to time, topics arise which are connected to the course by way of industrial
application but which are strictly speaking, out of scope of the course. For instance, data
scientists are great consumers of databases but use them as only part of their work. In
cases where students ask about topics which are out of class scope, I tell them what I know
about it and open the topic for discussion and recommendations for further inquiry. It is
important that any topic is allowed in class, as long as the student’s inquiry is explored in
good faith. Graduate courses and independent study courses have especially benefited from
this approach.



Project Orientation

All of my classes include a class project, the goal of which is to make technology development
and implementation as relevant as possible for them. Class projects not only reinforce the
skills they learn through lab exercises and homework assignments, but it also familiarizes
them with the process of brainstorming, designing, developing, debugging, deploying, and
using new software.

The class project proceeds in three phases: requirements, design, and implementation. The
deliverable for the requirements phase is a requirements document, describing the software
project they will undertake (the project must be appropriate to the course; e.g. a database
course would require a database project, etc.). The document should provide the context
and focus of the software product, describe how it is intended to perform or function, and
illustrate some sample output from the software (e.g. data or web page mockups). At this
point, students must also specify if they would like to work with others in the class, and if
so, whom is part of their “development team”.

The design phase entails a deliverable which describes the software in abstract but usable
terms; typically graphs. For instance, a database would be described using an entity-
relationship diagram such as a Chen diagram or Crow’s foot Diagram. Websites would
be described with a site map, and wireframe web page mockups would illustrate general
design principles (patterns, boilerplate, content areas, etc.). In the implementation phase of
the project, students create the software they have described, culminating in a class presen-
tation and demonstration. Successful completion of the class project comprises no less than
30% of their course grade.

Projects are effective at providing students with a toy example or microcosm of a software
engineer’s career. Students may develop their project across classes (e.g. a website with a
database back-end), and often include them as part of their graduation portfolio and job
application materials.

Post-Class Advocacy

Over my 20+ year career, | have gotten to know many I.T. job recruiters, some of whom I
have entrusted with my own career. If they wish to pursue an I.T. career opportunity, I offer
to refer them to a recruiter. If they wish, I also help them prepare for the interview and
if successful, the job. As mentioned elsewhere, I have always taught Computer Science to
non-majors. Some students decide to pursue a career in software development nonetheless
— my own career started this way — and fashion a resume which reinterprets their education
and work experience to make it compatible with an I.T. career. I find these students are
as successful in I.T. careers as those with CS undergraduate credentials. 1 am careful to
mention this when referring such students to I.T. recruiters.

Student Evaluations

My student evaluations have been consistent with average faculty scores, and are above
average for adjunct faculty. Adjunct faculty score overall lower on their evaluations, due
mainly to our lack of availability. I use this valuable feedback to refine my course materials



and grading criteria. I also try to cultivate relationships with students who are comfortable
in their program of study and / or are close to my own age. I ask them personally for
feedback, and for their honesty about things about the course which they think are or aren’t
working for them. I take this feedback seriously as well, though mainly as an indication of
how students are feeling rather than performing. Especially for students new to the practice,
software development is stressful. It’s satisfactory if students are feeling mostly okay with
the stress, but not if they feel overwhelmed by it, or overly confused with the process or
the course content. Based on this more personal feedback, I may revisit course content for
clarification or adjust the pace of the course.

Conclusion

The effectiveness of my teaching style can be evaluated at multiple points, only some of which
are reflected in student evaluations. My students’ ultimate career success, and especially
their comfort in evaluating, developing, and using software, is the best feedback mechanism
I know for understanding the success or deficiency of my teaching style. I strive to help
develop student competence and confidence, hand in hand. The role of technology in their
careers indicates how well I've contributed to their development as a professional.



